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Abstract

Natural convection in a volumetrically heated rectangular enclosure ®lled with a low-Prandtl number
�Pr � 0:0321� ¯uid was studied by direct numerical two-dimensional simulation. The enclosure had isothermal side
walls and adiabatic top/bottom walls. The aspect ratio was 4 and the Grashof number Gr, based on conductive
maximum temperature and cavity width, ranged from 3.79 � 104 to 1.26 � 109. According to the value of Gr,

di�erent ¯ow regimes were obtained: steady-state, periodic, and chaotic. The ®rst instability of the steady-state
solution occurred at Gr13� 105; the resulting time-periodic ¯ow ®eld consisted of a central rising plume and of
convection rolls, periodically generated in the upper corners of the cavity and descending regularly along the vertical

isothermal walls. Transition from periodic to chaotic motion occurred at Gr11� 106; up to the highest Grashof
numbers studied, the ¯uid motion exhibited a recognizable dominating frequency, associated with the process of roll
renewal and scaling as Gr 1/2. The ¯ow ®eld still consisted of a meandering rising plume and of downcoming

convection rolls, but these coherent structures were now irregular in shape, size and velocity. For Grashof numbers
larger than0106 (chaotic ¯ow), the friction coe�cient averaged along the vertical walls was found to scale as Grÿ1/3

and the Nusselt number (overall/conductive heat transfer) as Gr 1/6. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Studies of free convection in enclosures with internal

heat generation have been conducted in the past in

connection with such problems as the geophysics of

the earth mantle [1] or heat removal from a molten

nuclear reactor core [2], and thus have usually focussed

on shallow cavities and Prandtl numbers larger than

unity. More recently, the problem of free convection

with volumetric heat sources has reappeared in connec-

tion with advanced engineering applications such as

water-cooled lithium±lead breeder blankets for nuclear

fusion reactors [3] and liquid metal sources of spalla-

tion neutrons for subcritical ®ssion systems [4]. In

these latter applications, the Prandtl number is much

less than 1 and the geometry is better represented by a

slender vertical cavity.

As a preliminary step towards a full understanding

of the complex ¯ow occurring in the above and similar

con®gurations, a computational study was conducted

of the natural convection ¯ow occurring in a volume-

trically heated liquid metal. The value chosen for the

Prandtl number, Pr � 0:0321, is representative of the
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lithium±lead alloy to be used in the breeder segments
of the DEMO nuclear fusion reactor [3]. The compu-
tational domain, shown in Fig. 1, was a simple rec-

tangular enclosure with aspect ratio 4, adiabatic top/
bottom walls and isothermal side walls.
In particular, the purposes of the study were:

. to determine under which conditions the ¯ow would
be steady, unsteady, or chaotic;

. to investigate whether and how the ¯ow would split

into separate convection cells or rolls;
. to assess the relative importance of convective heat

transfer with respect to conduction.

The cases of square and shallow enclosures will be
considered in a companion paper.

2. Literature review

Very few studies, either experimental or compu-
tational, have been presented so far on unsteady free
convection in liquid metal-®lled, volumetrically heated

enclosures. However, useful hints can be obtained by
studies sharing one or the other aspect with the present
problem.

2.1. Internally heated cavities

The free convective ¯ow in horizontal ¯uid layers
with a large or in®nite planform and internal heat gen-

eration has been the subject of many theoretical and
experimental investigations. A thorough, but slightly
outdated, survey is given by Kulacki and Richards [5].
For a horizontal ¯uid layer of thickness D with uni-

form power density q, conductivity k and both walls
kept at the same uniform temperature, at su�ciently
low value of q heat transfer occurs only by conduction

and a parabolic temperature pro®le is established, with
a midplane-to-wall temperature drop Wc � �qD2�=�8k�:
Linear stability theory predicts that the onset of con-

vection occurs at a critical value Racr of the Rayleigh
number Ra � gbqD5Pr=�kn2� of 037,400. Convection
presents a cellular planform with down¯ow in the

Nomenclature

AR cavity aspect ratio, H=D (±)
Cf friction coe�cient (±)
D cavity width (m)

F frequency (sÿ1)
f dimensionless frequency, F=F0 (±)
g acceleration due to gravity (m sÿ2)
Gr Grashof number, gbqD5=�kn2� �Ra=Pr (±)
H cavity heigth (m)
k thermal conductivity (W mÿ1 Kÿ1)
Nu1 ®rst Nusselt number, 1=Tmax (±)
Nu2 second Nusselt number, (2/3)/hTi (±)
P pressure (N mÿ2)
p dimensionless pressure, P=�rU 2

0� (±)
Pr Prandtl number, n=a (±)
q power density (W mÿ3)
q0 heat ¯ux (W mÿ2)
Ra Rayleigh number, gbqD5Pr=�kn2� (±)
t dimensionless time, t=t0 (±)
T dimensionless temperature, �WÿWw�=Wc (±)

U, V velocity components (m sÿ1)
u, v dimensionless velocities U=U0, V=U0 (±)
X, Y coordinates (m)

x, y dimensionless coordinates X=D, Y=D (-)

Greek symbols
a thermal di�usivity (m2 sÿ1)
b thermal expansion coe�cient (Kÿ1)
D mesh size (m)

Dt time step (s)
ds dimensionless mesh size, D=D (±)
dt dimensionless time step, Dt=t0 (±)

DW wall-to-wall temperature drop (K)
e dissipation of turbulence energy (W kgÿ1)
W temperature (K)

Wc conductive temperature, (qD 2)/(8k ) (K)
LK Kolmogorov dissipative scale, �n3=e�1=4

(m)

LW thermal dissipative scale, �a3=e�1=4 (m)
n kinematic viscosity (m2 sÿ1)
r density (kg mÿ3)
tH heat di�usive time scale, D2=a (s)

tM momentum di�usive time scale, D2=n (s)
t time (s)
rW vertical temperature gradient (K mÿ1)

Subscripts
BV Brunt±VaÈ isaÈ laÈ
c conductive
cr critical
K Kolmogorov

min/max minimum/maximum
P periodic
w wall
x, y directions

0 reference
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centres of cells (unlike Rayleigh±BeÁ nard convection),

at least for su�ciently high Prandtl numbers [6]. Cells
are stationary up to Rayleigh numbers of

080� Racr13� 106, while at higher Ra they become

unsteady and chaotic motion occurs.

The problem of an internally heated ¯uid layer hav-

ing only the upper boundary at a ®xed temperature

with the lower boundary adiabatic was studied by

Tveitereid and Palm [7]. In this case, linear stability

theory predicts the onset of convection at a critical
Rayleigh number (de®ned as above) of 2772. The plan-

form of convection is still characterised by a roughly

hexagonal cellular pattern, with down¯ow in the

centres of the cells at Prandtl numbers above 0.25, but

up¯ow at low Pr. Hexagons may become unstable at
high Ra�> 40� Racr� in favour of roll-like cells, but

some controversy seems to exist on this issue.

As regards enclosures with ®nite planform, most
studies have regarded shallow cavities at a Prandtl

number of 03±7, which is easily attainable by using

cold water or electrolytes as the simulating ¯uid. Shal-

low cavities cooled only from the upper surface were
experimentally studied by di�erent authors [8±10].
Transition from laminar to turbulent convection was

reported to occur for Ra > 0107, and well mixed tem-
perature distributions were found at higher Rayleigh
numbers. However, the Nusselt number was found to

increase as Ra0:23±0:24 (a typically laminar behaviour)
in the whole range Ra = 103±1012.

Turning to computational studies, Churbanov et al.
[11] used two-dimensional direct simulation (with the
Navier±Stokes equations recast in c±o form) to com-

pute ¯ow and heat transfer in an internally heated
shallow rectangular cavity (aspect ratio AR = 0.25±1)

at Rayleigh numbers in the range 105±108 and Pr � 7:
They tested alternative thermal boundary conditions
(including the case of all walls isothermal, a con®gur-

ation with isothermal horizontal and adiabatic side
walls, and a variant with isothermal top and insulated
other surfaces) and obtained symmetry-breaking and

time-periodic unsteady solutions, although the compu-
tational grids used were relatively coarse (e.g., 40� 80

nodes).
Daniels and Jones [12] presented a computational

study for a shallow cavity with uniform volumetric

heating, isothermal side walls and adiabatic top and
bottom walls. The authors used a matched asymptotic
expansion method valid for Rayleigh numbers (based

on the cavity height) of the order 1=AR: Shallow rec-
tangular cavities �AR � 0:5� with isothermal side walls

and adiabatic top±bottom walls were also studied by
Farouk [13] for Pr � 6:5; he used the k±e turbulence
model for Ra in the range 2 � 106±2 � 109, so that the

¯ow unsteadiness was not explicitly simulated, and
adopted a time-marching approach to the ®nal steady
state. He obtained solutions which exhibited left±right

symmetry breaking.
Dinh and co-workers [14±16] simulated ¯ow and

heat transfer in a rectangular or hemispherical ``cor-
ium'' pools for Rayleigh numbers up to 01014 and
Pr � 3±7: They assessed alternative turbulence models

against direct simulation results and available exper-
imental heat transfer data, and selected a purposely

adapted low-Reynolds number k±e model as that giv-
ing the best agreement with the measurements.
May [17] presented a two-dimensional compu-

tational study of free convection in a square enclosure
of side length D with internal heat generation, inclined
at arbitrary angles with respect to the horizontal. All

four walls were assumed to be isothermal, the Prandtl
number was 7, and the Rayleigh number (once de®ned

as above) ranged from 6.4 � 105 to 9.6 � 106. For a
horizontal cavity, May obtained oscillating periodic
solutions at Ra > 3:2� 106, but only when the full

cavity was simulated without left±right symmetry
assumptions. At Ra � 6:4� 106, the period of the os-

Fig. 1. Sketch of the model rectangular cavity with isothermal

vertical walls and adiabatic horizontal walls. The location of

monitoring points P1 to P5 is indicated.
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cillation was 00:38�D2=n�: The computational grids
used were relatively coarse (61 � 61 cells at most) and

a signi®cant residual grid dependence was still present
in the results. Numerical predictions were also com-
pared with experimental heat transfer and temperature

distribution measurements conducted by Lee and
Goldstein [18] using interferometry in a saline water-
®lled enclosure. A good agreement was reported as

regards ¯ow patterns and maximum temperatures in
the enclosure, with some disagreement in the heat ¯ux
distributions along the walls at the lowest inclination

angles (0±158).
The simultaneous presence of internal heat gener-

ation and di�erential wall heating in enclosures has
also been the subject of some studies, e.g. [19±21], all

of which regard Pr > 0:7 and steady-state conditions.

2.2. Related work

Low Prandtl number free convective ¯ows have been

the subject of a vast number of studies. Most of them
have regarded di�erentially heated cavities without in-
ternal heat generation, conditions which are quite
removed from those investigated in the present work.

However, some of the main ®ndings, notably regarding
¯ow regimes and their transitions, deserve a brief sur-
vey here.

For di�erentially heated ¯uid layers with a wall-to-
wall temperature di�erence DW, the Rayleigh number is
usually de®ned as Ra � gbDWD3Pr=n2: This can be

compared with the de®nition given above for internally
heated ¯uid layers by observing that, in the latter case,
a natural temperature scale is the purely conductive

temperature drop Wc which, according to the thermal
boundary conditions, is given by Wc � qD2=�8k� (both
main walls isothermal at the same temperature) or by
Wc � qD2=�2k� (one of the main walls isothermal, the

opposite adiabatic).
For shallow enclosures �AR < 1), in the limit of low

Rayleigh number, two-dimensional ¯ow and in®nite

horizontal extent, an analytical solution (Hadley-cell
¯ow) exists. Braunsfurth et al. [22] found by exper-
iments and two-dimensional ®nite element simulations

that, for Pr10:025 (liquid gallium), as the Rayleigh
number increases from 1.6� 105 to 8� 105, a progress-
ive departure from the Hadley-cell solution is
observed; the two-dimensional laminar steady solution

is stable to two-dimensional disturbances and no Hopf
bifurcation to oscillating behaviour occurs. However,
previous studies conducted at lower Pr [23] had shown

that a Hopf bifurcation does occur, e.g. for Ra �
36,500 at Pr � 0:015 and for Ra=Pr41:63� 106 at
Pr40:
Coarse-mesh three-dimensional ®nite-di�erence

simulations of free convection of gallium �Pr � 0:027�
in rectangular enclosures of di�erent aspect ratios were

presented by Viskanta et al. [24] and were compared
with experimental temperature distributions. The Ray-

leigh number was 0106. At this Ra, the ¯ow was
found to be steady and laminar. The authors observed
that three-dimensional e�ects were signi®cant and, due

to the low value of the Prandtl number, extended
down to the mid-plane of the cavity instead of being
con®ned to the front and back walls. Also, a correct

modelling of the thermal boundary conditions was
found to be crucial.

3. Model

As mentioned in Section 1, the physical model

adopted in the present study consists of a rectangular,
vertical, ¯uid-®lled cavity of height H and width D.
Fig. 1 reports also the location of ®ve monitoring

points (used in the following). The ¯uid motion is dri-
ven by a uniform internal power density q, the left and
right walls being at constant temperature, Ww and the

upper and lower boundaries at zero heat ¯ux. The
¯uid considered is a liquid metal (Li±17Pb alloy),
characterized by a Prandtl number of 0.0321 at 3008C.
In order to write the governing equations in dimen-

sionless form, it is necessary to introduce appropriate
scales for length, temperature, time, velocity and press-
ure. The most natural length scale is D, the distance

between the isothermal walls. For temperature, the
conductive scale Wc � qD2=�8k� was chosen here; it rep-
resents the midplane-to-wall temperature drop in the

absence of convection. As regards the frequency or
time scales, by analogy with the previously de®ned
Brunt±VaÈ isaÈ laÈ frequency FBV, which characterizes sta-

bly-strati®ed ¯ows, one may introduce a reference fre-
quency F0 � �gbWc=D�1=2=�2p�: The corresponding time
scale is t0 � F ÿ10 , which may be written as
t0 � �4p

���
2
p

Grÿ1=2�tM, tM � D2=n being the momentum

di�usive time scale and Gr � gbqD5=�kn2� � Ra=Pr the
Grashof number. A velocity scale coherent with the
above de®nitions is U0 � D=t0, i.e. the ratio of length

to time scales. Finally, an appropriate pressure scale is
rU 2

0: As con®rmed a posteriori by the computational
results, the above choice of scales allowed all variables

to remain in unity order throughout the range of par-
ameters investigated.
The two-dimensional continuity and momentum

equations, coupled with the energy transport equation
under the Boussinesq approximation, may be written
in dimensionless form as:

@u

@x
� @v
@y
� 0 �1�
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@ 2v
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� @

2v

@y2

!
� 4p2T �2b�

@T
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� u

@T

@x
� v

@T

@y
� 4p

���
2
p������

Gr
p � Pr

 
@ 2T

@x 2
� @

2T

@y2
� 8

!
�3�

in which x � X=D, y � Y=D, u � U=U0, v � V=U0,
p � P=�rU 2

0�, T � �Wÿ Ww�=Wc, t � t=t0: The boundary

conditions are:

u � v � 0, @T=@y � 0 for y �2AR=2 �4�

u � v � 0, T � 0 for x �21=2 �5�

The Grashof numbers investigated ranged from
03:79� 104 to 1:26� 109:
In the limit of in®nitely slender cavity (parallel ¯ow)

and under the assumption of steady-state conditions,
Eqs. (1)±(3) with boundary conditions (5) can be given
a simple analytical solution [5]. By assuming

@v=@y � @T=@y � 0, it follows from continuity that
u � 0; moreover, all convective terms vanish, @p=@x �
0 and Eqs. (1)±(3) are reduced to:

0 � ÿdp

dy
� 4p����������

Gr=2
p � d2v

dx 2
� 4p2T �6�

0 � 4p����������
Gr=2
p � Pr �

�
d2T

dx 2
� 8

�
�7�

with boundary conditions v � T � 0 for x �21=2:
The solution to Eqs. (6) and (7) is:

v � p

�������
Gr

2

r
�
�
x 4

3
ÿ x 2

10
� 1

240

�
�8�

T � 1ÿ 4x 2 �9�

Note that the dimensionless temperature distribution
follows the pure conductive behaviour independent of
the Prandtl and Grashof numbers, and that the dimen-

sionless velocity distribution depends only on the Gra-
shof number. The wall shear stress, once made
dimensionless with respect to rU 2

0, i.e. expressed as a

friction coe�cient Cf , is given by Cf � 4p2=1512:63
and does not depend on Gr. The Gr 1/2 dependence of
the (dimensionless) velocity v re¯ects the fact that, as

far as the end regions are neglected, the temperature
distribution is una�ected by convection and the ¯uid

velocity is given by a balance of viscous forces and
constant buoyancy forces, yielding (dimensional) vel-
ocities proportional to q (i.e., to Gr ).

Under the same assumption of parallel ¯ow, in the
case of a di�erentially heated, in®nitely long horizontal
container with adiabatic top and bottom walls, a simi-

lar steady-state solution (Hadley cell) exists [22].

4. Numerical methods

Eqs. (1)±(3) were solved by using a ®nite-volume

technique based on the SIMPLEC pressure±velocity
coupling algorithm [25], Crank±Nicholson time step-
ping and the central discretization scheme for the di�u-

sive and advective terms. At each step, the SIMPLEC
algorithm was iterated until the mass, momentum and
enthalpy residuals exhibited no further reduction; this

typically required 20 to 50 iterations.
As will be discussed in the following sections,

according to the Grashof number the ¯ow either
attained a steady-state con®guration or exhibited per-

iodic or chaotic unsteadiness. In the former case
�GrR3� 105), the simulation was protracted until no
signi®cant variation of monitored quantities was

observed. This typically required about 10 conductive
time constants tH � D2=a, corresponding to a dimen-
sionless duration increasing from 01.6 for Gr �
3:79� 104 (lowest Grashof number simulated) to 04
for Gr � 2:19� 105 (highest Grashof number for
which a steady-state solution was attained). In the

cases with time-dependent behaviour, as will be dis-
cussed in detail in the following sections, the ¯ow
exhibited a dominating period ranging from 03 to 6
�t0 units). Simulations were protracted in most cases

so as to include at least six such periods, i.e. for a
dimensionless time tmax of020±40.
In the case of chaotic ¯ow (which was obtained here

for Grr106), the main criterion for the choice of the
computational grid is that all relevant (energy-contain-
ing) time-dependent ¯ow structures (``eddies'') are

properly resolved. This requires the mesh size D to be
of the same order as the Kolmogorov scale LK of dissi-
pative eddies. This can be expressed [26] as:

LK �
ÿ
n3=e

�1=4 �10�
in which e is the rate of dissipation of turbulence

energy per unit mass (p.u.m.). The total rate of dissipa-
tion p.u.m. of mechanical energy in the cavity can be
estimated as the product of the buoyancy acceleration,

0gbWc, by the buoyant velocity, 0U0 � D=t0: In fully
chaotic ¯ow, most of the dissipation occurs through a
cascade of turbulent structures so that one can write:
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e1gbWcD=t0 �11�

By substituting Eq. (11) for e into Eq. (10) and taking
the de®nitions of Wc, Gr and t0 into account, the fol-
lowing estimate is obtained for the dimensionless dissi-
pative scale lK � LK=D:

lK1
ÿ
32p

���
2
p �1=4

Grÿ3=8 �12�

This can be used as an estimate of the maximum
dimensionless mesh size ds � D=D: For example, Eq.
(12) gives lK10:02 for Gr � 106 and lK10:004 for

Gr � 108, suggesting that 050 � 200 cells would be
required for the present aspect ratio of 4 in the former
case and0250� 1000 cells in the latter.

Of course, the dissipative scale of thermal structures
is larger than the above scale of the mechanical struc-
tures since it can be expressed as LW � Prÿ3=4LK (yield-

ing LW113LK for the present Prandtl number of
0.0321).
As regards the time step, the implicit (Crank±

Nicholson) time stepping scheme adopted in the pre-

sent simulations imposes no stability requirements.
However, in chaotic ¯ow simulations, the time scale of
dissipative (Kolmogorov) eddies must be resolved. By

adopting Taylor's hypothesis of ``frozen turbulence''
and remembering that the typical dimensionless con-
vective velocity is of unity order, the requirement on

the time step dt can be made formally identical to the
spatial resolution requirement on the mesh size ds,
expressed by Eq. (12). Therefore, one may write:

dt1ds1lK �13�

Although the ``frozen turbulence'' hypothesis can
hardly be regarded as rigorous for the present, con-
®ned-convection, ¯ow, yet it is coherent with the
Eulerian representation underlying the description of

the problem. Of course, the criteria expressed by Eqs.
(12) and (13) become meaningless out of the range of
the cases exhibiting chaotic behaviour, i.e. at Gr <
0106:
Unfortunately, a strict observance of the above cri-

teria was computationally prohibitive. The compu-

tational grids used in this study had up to 128 � 220
�Nx �Ny� nodes, selectively re®ned in the wall region
by using a geometrical progression with Dmax=Dmin �
60: For Gr > 107, complete grid independence could

not be demonstrated; for example, at Gr � 3:79� 108

the mean wall friction coe�cient changed by 4% as
the grid was re®ned from 50� 100 to 128� 220 nodes.

However, in view of the main purposes of the present
study (which were to investigate the qualitative beha-
viour of the ¯ow and to identify the most relevant

phenomena involved, rather than to draw detailed
quantitative estimates), this degree of grid indepen-
dence was accepted as satisfactory.

As regards the time step, in most cases it was set to

4� 10ÿ3 (in dimensionless form), which implies that Ð

in the case of unsteady ¯ow Ð a main period was

resolved by 750 to 1500 steps. Simulations repeated by

halving this value showed no signi®cant change in the

case of steady-state or periodic ¯ow, and no statisti-

cally signi®cant change in the case of chaotic ¯ow. In

all cases, the ``natural'' initial conditions u � v � T � 0

were adopted; no disturbance was explicitly superim-

posed on the ¯ow or thermal ®elds, so that, whenever

spatial symmetry breaking occurred, this was only due

to the growth of small asymmetric numerical errors in

the solution.

Each simulation typically required 45±180 s per time

Fig. 2. Initial transient for cases attaining a steady-state con-

dition. (a) Average and maximum temperatures; (b) vertical

velocity at monitoring points 1 and 4.
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step (according to the computational grid used) on a
Pentium-II 350 MHz computer with 128 Mb RAM.
Most of the results will be presented in the form of

time series of computed quantities at monitoring points
or of whole-®eld maps of streamlines, isotherms or de-
rived quantities. In addition to these, the Eulerian time

power spectrum can be computed for each point quan-
tity f�t� as:

Pff�f� � j
�tmax

tmin

f�t� � e2pjft dtj2 �14�

The Fast Fourier Transform algorithm was used here

to evaluate Pff: Corresponding spectra start from a

minimum frequency fmin � �tmax ÿ tmin�ÿ1, and include

values of Pff only at frequencies multiple of fmin, up

to a maximum value fmax � �2dt�ÿ1:

Fig. 3. Pro®les of (a) scaled vertical velocity and (b) tempera-

ture at mid height �y � 0� for the steady-state cases. Solid

line: asymptotic slender cavity solution; broken lines: numeri-

cal results for di�erent Grashof numbers.

Fig. 4. Predicted ¯ow and temperature ®elds for the steady-

state cases. From left to right: Gr � 3:79� 104, 1.26 � 105

and 2.19 � 105. (a) Streamlines, dimensionless separation =

0.2. Solid lines: clockwise ¯ow; broken lines: anti-clockwise

¯ow. (b) Isotherms, dimensionless separation = 0.1.
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5. Steady-state ¯ow

For GrR3� 105, the ¯ow settled to steady-state sol-
utions. The behaviour of some quantities during the in-
itial transient is shown in Fig. 2 for the three lowest

Grashof number cases simulated �Gr13:79� 104, 1.26
� 105 and 2.19� 105).
Fig. 2(a) reports average and maximum tempera-

tures as functions of time. The initial temperature rate
of rise in the cavity is identical for any point, and is
given Ð in dimensionless terms Ð by @T=@ tjinit �
32p

���
2
p
=�Pr ������

Gr
p �, as can be deduced from Eq. (3) for

initially negligible convection and di�usion. Therefore,
in the dimensionless form used here, the initial tem-
perature slope decreases with increasing Gr.

Fig. 2(b) reports the vertical velocity v at two of the
monitoring points indicated in Fig. 1 (P1 and P4) as a
function of time. The increase of v1 (dimensionless)

with Gr is due to the same reasons discussed in Section
3 in relation to the asymptotic slender cavity solution.
Note that velocities are still evolving at t11, while,

due to the low Prandtl number, temperatures settle to
a steady-state value more rapidly �t10:5).
The steady-state numerical solutions are compared

with the parallel-¯ow solution in Fig. 3. Pro®les of ver-
tical velocity v (a) and temperature T (b) at the cavity
midheight y � 0 are compared with the analytical pro-
®les given by Eqs. (7) and (8). The dimensionless vel-

ocity v was further scaled by p�2=Gr�1=2 in order to
eliminate most of the Grashof number-dependence of
the results. It can be observed that the numerical sol-

ution progressively departs from the analytical one as
Gr increases but is still close to it at the highest Gra-
shof numbers for which a steady-state solution exists.

The temperature pro®le practically coincides with the
purely conductive solution through the whole range of
steady-state cases.
Fig. 4 reports steady-state stream function and tem-

perature ®elds for the three cases. The stream function
is made dimensionless with respect to DU0 � D2=t0:
There is only one circulation cell in each half of the

cavity, with a perfect left±right symmetry and an ap-
proximate up±down symmetry. The temperature ®elds
appear to be only slightly modi®ed with respect to the

one-dimensional pure conductive solution. The up-
welling stream located around the cavity midline pro-
vides convective transport of hot ¯uid from bottom to

top, causing an increase in temperature in the upper±
central zone which is more marked at higher Gr, as is
re¯ected by the Tmax asymptotic values in Fig. 2(a).
Thus, vertical transport breaks the top±bottom sym-

metry of the purely conductive solution. However, the
e�ect of convection is only to change the temperature
distribution without signi®cantly altering its average
which remains close to the conductive solution �hTi �
2=3 in dimensionless terms)1. Thus, for the present low
Prandtl number, the contribution of convection to
overall heat transfer is negligible up to Gr13� 105

(see also Section 11).

6. Periodic ¯ow

For Grashof numbers ranging approximately from 3

� 105 to 106 perfectly periodic solutions were obtained.
Note that this range of Gr is similar to that (4.5� 105±
1.35 � 106) for which periodic solutions were obtained
by May [17], despite the considerably di�erent Prandtl

Fig. 5. Behaviour of (a) maximum and (b) average tempera-

tures as functions of time for Gr � 3:79� 105 (periodic ¯ow).

1 Throughout this paper, brackets h*i are used to denote

spatial averaging, while an overbar �* is used to denote time-

averaging.
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number (7), aspect ratio (1) and thermal boundary

conditions (all four walls isothermal).

Two cases were simulated in the periodic range,

namely, Gr � 3:79� 105 and 7.03 � 105. Fig. 5 shows

the behaviour of maximum and average temperatures

as functions of time for the case at lower Gr (3.79 �
105). For the same Gr, Fig. 6 reports the time beha-

viour of (a) vertical velocity v and (b) temperature T in
some of the monitoring points indicated in Fig. 1.

Points P1±P2 and P3±P5 are symmetrically located

with respect to the vertical midline; points P1±P2 lie in

the lower half of the cavity while points P3±P5 in the

upper half.

The ®rst noteworthy feature of Fig. 6 is that, after a

few (03) time units, the symmetric solution breaks

down as instabilities grow, and the time behaviours of

quantities relative to geometrically symmetric points
begin to di�er. The symmetry breaking of the instan-
taneous ¯ow ®eld occurs almost at the same instant in

the upper and lower parts of the cavity (points P1±P2,
P3±P5). A reduction in the temperature maximum is
observed following the symmetry breaking (Fig. 5,

dimensionless time t13). Starting from 10 time units,
quantities at monitoring points exhibit a clearly peri-

odic behaviour, the period being about 4.7 time units.
Points that are symmetric in space (P1±P2 and P3±P5)
exhibit the same behaviour, but shifted in time by half

a period. Note that the period in the maximum and
average temperatures (Fig. 5) is only half of the true
period of the solution (Fig. 6); the reason is that the

location of the maximum temperature shifts its pos-
ition with time around the cavity centreline twice in a

period, and the average temperature is obviously insen-
sitive to the solution parity.
Fig. 7 reports instantaneous streamlines (a) and iso-

therms (b) for the same Grashof number (3.79 � 105)
during the initial transient. The interval between con-

secutive plots is 00.63 in dimensionless form. The
®gure shows clearly that the break-up of the symmetric
steady-state solution occurs at t13:5 (between ®fth

and sixth frame), after a pseudo-stationary regime has
been attained, and is due to the growth of lateral oscil-
lations of wavelength l1D in the central rising plume,

which results in the appearance of separate downcom-
ing recirculation rolls.

The instability can be interpreted as the growth of
an antisymmetric vertical velocity disturbance propa-
gating downwards as a travelling wave with a dimen-

sionless wavenumber of 01 and a dimensionless speed
of 00.2. A linear stability analysis conducted for the
in®nite-aspect ratio vertical slot (parallel ¯ow) by Ger-

shuni and co-workers Ð as reported in Kulacki and
Richards [5] Ð gave a critical Grashof number of 01

� 105 for the growth of antisymmetric travelling-wave
disturbances at Prandtl numbers comparable with that
of the present study. The associated wavenumber and

wave speed were 00.65 and 0.28, respectively, in the
present dimensionless formulation. Both the larger
critical Gr and the larger wavenumber observed in the

present case for the developed disturbance may be
explained by the ®nite height of the enclosure; interest-

ingly, the dimensionless frequency of the disturbances
(wavenumber � speed) is very close to that predicted
by the linear stability theory for in®nite AR (00.2).

Fig. 8 shows a time sequence of instantaneous
stream function (a) and temperature (b) during one

period, after the periodic regime has been attained
�t115:7 to 20.1, separation of plots 00.63). A multi-
cellular asymmetric instantaneous structure is revealed

by the graphs relative to the stream function (a), with
at least three convection rolls for each side of the cav-

Fig. 6. Behaviour of (a) vertical velocity v and (b) temperature

T at monitoring points 1±5 for Gr � 3:79� 105 (periodic

¯ow).

I. Di Piazza, M. Ciofalo / Int. J. Heat Mass Transfer 43 (2000) 3027±3051 3035



ity. They are alternately disposed in a chessboard

fashion at the two sides of the central rising plume. In
the instantaneous temperature ®eld (b), the winding

shape of the isothermal lines is still recognizable but,
as compared to the shape of the null streamline in
graphs (a), the amplitude of the lateral oscillation is

greatly attenuated by conduction e�ects which domi-

nate at low Prandtl number.
Anti-clockwise and clockwise convection rolls are

generated in the upper left and right corners, respect-
ively; two staggered trains of rolls proceed downward
through the cavity and extinguish their energy by vis-

Fig. 7. Initial transient for Gr � 3:79� 105 (periodic ¯ow). Dimensionless time interval between frames 00.63. (a) Streamlines,

dimensionless separation = 0.2. Solid lines: clockwise ¯ow; broken lines: anti-clockwise ¯ow. (b) Isotherms, dimensionless separ-

ation = 0.1.
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cous dissipation once they approach the bottom wall.

The period tP after which the ¯ow ®eld repeats itself

identically (renewal time of the roll pattern) is 04.7 in

dimensionless terms and corresponds to the time

necessary for a pair of rolls (clockwise/anticlockwise)

to be formed. Note that the lifetime of a single roll is

about 3tP since three pairs of rolls (in the average) are

present in the cavity. The left and right halves of the

cavity experience the same states within a given period,

but with a time lag of half a period as observed by dis-

cussing the time behaviour of various quantities at

symmetric monitoring points.

Examples of velocity and temperature power spectra

at monitoring point P1 are represented in Fig. 9. Spec-

tra were normalized so that their integral was 1. They

exhibit markedly separate individual lines correspond-

Fig. 8. Snapshots of ¯ow and temperature ®elds for Gr � 3:79� 105 after periodic ¯ow has been attained. Dimensionless time

interval between frames 00.63. The sequence covers approximately one period. (a) Streamlines, dimensionless separation = 0.2.

Solid lines: clockwise ¯ow; broken lines: anti-clockwise ¯ow. (b) Isotherms, dimensionless separation = 0.1.
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ing to discrete frequencies, in accordance with the peri-

odic nature of the ¯ow. The highest peak occurs at the
main periodic frequency fP, while all secondary max-
ima correspond to its higher harmonics, related to the

shape of the original signal. The highest frequency still
having a signi®cant energy content (say, r10ÿ3 times
the main peak) is 05fP for both, velocity and tempera-
ture.

7. Transition to chaotic behaviour

The periodic regime exists only in a narrow range of
Grashof numbers; as Gr increases above0106, the per-

fect periodicity behaviour is replaced by an irregular
behaviour. This is illustrated in Fig. 10, where, for
Gr � 1:26� 106, velocities (a) and temperatures (b) are

shown at monitoring points 1 and 2 as functions of t
during the whole simulation time (048). The approxi-
mate periodicity is quite evident, but many irregulari-

ties are present. Unlike in the periodic cases, curves
relative to points which are symmetrical in space are
not identical and shifted in time, but rather exhibit a

completely di�erent shape. The main period which can

be identi®ed in the ®gure still corresponds to the roll
renewal time and is tP15:8 �fP10:17), close to that

(00.15) observed in the periodic case at Gr �
7:03� 105: On the basis of the relatively short simu-
lation time, it is di�cult to ascertain whether the ¯ow

at this Grashof number is properly chaotic or rather
quasi-periodic (i.e., possessing two incommensurate

frequencies and their harmonics, and characterized by
an open orbit con®ned on a torus). Quasi-periodic
regimes between periodic and chaotic ¯ow have been

identi®ed in di�erentially heated cavities [27].
Fig. 11 shows time sequences of instantaneous ¯ow

and temperature ®elds, well after the initial transient
has died away. Separation between frames is 0.57 time

Fig. 9. Normalized power spectra of vertical velocity (a) and

temperature (b) at monitoring point 1 for Gr � 3:79� 105

(periodic ¯ow).

Fig. 10. Behaviour of vertical velocity v (a) and temperature

T (b) at monitoring points 1 and 2 for Gr � 1:26� 106:
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units; thus, the sequence shown extends approximately
over one main period tp. Rolls are alternately gener-
ated in the top corners as in the periodic case of Fig. 8;

now, however, they move downwards regularly only
until they reach approximately the mid height of the
cavity, while, in the lower part of the descent, irregular

and abrupt coalescence events occur. The coalescence
of rolls seems to be an important mechanism of roll
destruction and mechanical energy dissipation, besides

the simple viscous damping which was the only mech-
anism acting in the periodic case. As in the previous,
periodic-¯ow cases, the temperature distribution is
much smoother than the streamline distribution, due

to the dominating role played by conduction in a low
Prandtl number ¯uid.

8. Fully chaotic ¯ow

When the Grashof number is made to increase above
02 � 106, the ¯ow becomes completely chaotic. Four

di�erent Grashof numbers were investigated in this

range: 3.79 � 106, 3.79 � 107, 3.79 � 108, and 1.26 �
109.

Fig. 12 shows maximum and average temperatures

of the ¯uid as functions of time for the four cases.

Note that the dimensionless duration of the initial

transient increases with Gr for the reasons discussed in

Section 5. The amplitude of the overshoot following

the initial rise in the maximum or average temperature

decreases with increasing Gr due to increased mixing;

no overshoot is recognizable in hTi for the two highest

Grashof numbers, i.e. Gr13:79� 108 and 1:26� 109:
For the same reason, the most intense time ¯uctuations

in hTi or Tmax are observed at the lowest values of Gr

�Gr13:79� 106 and 3:79� 107).

Fig. 13 reports consecutive ``snapshots'' of stream

function (a) and temperature (b) in the startup phase

(up to t14:4� for Gr � 3:79� 108: The separation

between frames is 0.55 time units. The stream function

evolution (a) shows that, in the ®rst instants, a single

large natural convection cell appears on each side of

Fig. 11. Sequence of ¯ow ®eld and temperature distribution for Gr � 1:26� 106 after an almost periodic ¯ow has been attained.

Dimensionless time interval between plots 00.57. The sequence covers approximately one period tP: (a) Streamlines, dimensionless

separation = 0.2. Solid lines: clockwise ¯ow; broken lines: anti-clockwise ¯ow. (b) Isotherms, dimensionless separation = 0.1.
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the cavity, with a stronger circulation in the bottom

region (by contrast, the initial stronger circulation was

located in the top half of the cavity in the periodic

case Gr � 3:79� 105, see Fig. 7a). At t12:2 (frames

4±5), two shear-induced counter-rotating vortices start

to grow in the bottom corners while the previous main

convection cells move upwards. Up to this instant, the

spatial symmetry with respect to the vertical midline is

still preserved.

In the later instants, as the main circulation cells

rise, regions of low-speed ¯uid appear between these

structures and the counter rotating vortices (frame 6,

t13:3). At this point the left±right symmetry is broken

and the ¯uid motion becomes chaotic. The initial sym-

metry breaking occurs as the inwards-directed horizon-

tal jets resulting from the detached wall boundary

layers (and initially impinging symmetrically on the

cavity midline) abruptly overtake each other and inter-
penetrate (frames 6±7). This instability is peculiar to
the high Grashof number cases and was totally absent

in the periodic case, Fig. 7(a). However, the instability
mechanism (lateral oscillation of the rising plume)
described for the periodic case is still present.

The corresponding temperature sequence is illus-
trated in Fig. 13b. The initial growth of a horizontal

thermal strati®cation and the penetration of cold ¯uid
into the bottom central region characterize the early
stages of the transient (frames 1±3). However, the hori-

zontal strati®cation is progressively accompanied by a
signi®cant vertical strati®cation (frames 3±5). The

di�erence with the periodic case in Fig. 7b, in which
the vertical strati®cation was negligible, can be
observed. Animations of streamlines or isotherms

clearly show travelling-wave disturbances which propa-
gate downwards along the edges of the vertical bound-
ary layers.

The shear-induced counter-rotating vortices which
are formed at the bottom corners of the cavity (frames

4±6 in the streamline sequence) determine correspond-
ing regions of unstable thermal strati®cation in the
bottom part of the cavity, which also contribute to

chaotic mixing (frame 6 and following). In the same
frames, further smaller regions of unstable thermal
strati®cation can be observed also in the top region of

the cavity. All instability mechanisms seem to occur
almost simultaneously at t13:3 (frame 6).

Following the interval shown in Fig. 13, the further
evolution of the ¯ow and thermal ®elds is fully chaotic.
Fig. 14 shows the behaviour of the vertical velocity as

a function of time in the monitoring points 1 (a) and 4
(b) of Fig. 1 for the same chaotic cases. For clarity

purposes, only sequences of duration 06 (dimension-
less) have been reported, all well after the initial transi-
ent has died away. In the whole range of Grashof

numbers considered, several frequencies appear clearly
in the time series. The higher frequencies are observed
only for part of the time (e.g. t112±13 for the velocity

v1 relative to Gr11:26� 109), giving rise to a typical
intermittent behaviour. Intermittence seems to be as-

sociated with the rapid coalescence of two rolls as
observed in sequences of the ¯ow ®eld and is more evi-
dent in the bottom region of the cavity (monitoring

point 1).
Fig. 15 reports the temperature as a function of time

at the same monitoring points 1 (a) and 4 (b) for the

di�erent cases. High frequencies are still present at
point 1, located in the lower left region of the cavity,

but are almost completely absent at point 4, located
near the cavity midline and within the upper region of
the rising plume.

Power spectra of vertical velocity v (a) and tempera-
ture T (b) are presented in Fig. 16 for Gr � 1:26� 109

Fig. 12. Behaviour of maximum (a) and average (b) tempera-

tures as function of time for four fully-chaotic cases.
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at monitoring point 1. Four regions can be clearly

identi®ed in the spectra:

1. Low-frequency region �fR1�: here, particularly in

the velocity spectrum, Fig. 16a, the main features

are broad peaks corresponding to the roll renewal

frequency fP (10.3 for the present case) and to its

®rst harmonic at 2fP (10.6). Peaks are broadened,

unlike in the periodic spectra illustrated in Fig. 9,

due to chaotic frequency modulation.

2. Intermediate, energy-containing, region �1RfR10�:

Fig. 13. Initial transient for Gr � 3:79� 108 (chaotic ¯ow). Dimensionless time interval between frames 00.55. (a) Streamlines,

dimensionless separation = 0.2. Solid lines: clockwise ¯ow; broken lines: anti-clockwise ¯ow. (b) Isotherms, dimensionless separ-

ation = 0.05.
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This region corresponds to chaotic structures still

having a signi®cant power content and is character-
ised by a slope (indicated in Fig. 16) close to ÿ5=3,
i.e. to the theoretical value expected for the inertial
Kolmogorov sub-range of spectra for homogeneous

isotropic turbulence [26].

3. Dissipation region �10RfR30±50�: This region is
characterized by a steep fall of the power content of

the ¯uctuations, with a slope of0ÿ6 for v and ÿ9
for T. The (dimensionless) cuto� frequency of 010
can be identi®ed with the Kolmogorov frequency fK
of the dissipative eddies, and is much lower than the

highly conservative value (0400) which can be
deduced from the a priori criteria described in Sec-

tion 4. By applying Taylor's hypothesis of ``frozen

turbulence'' and keeping the de®nitions of vortex
renewal frequency fP and dissipative frequency fK in
mind, a simple analysis shows that the dimensionless

wavelength lK of the dissipative eddies can be
expressed as:

lK � AR

N
� fP
fK

�15�

where N is the number of pairs of recirculation rolls
(one clockwise, one anti-clockwise) along the height

of the cavity. For the case Gr11:26� 109 in Fig. 16,
one has N13, fP10:3 and fK110 (dimensionless
values), so that Eq. (15) yields lK10:036, which is

Fig. 14. Behaviour of vertical velocity v at two monitoring

points for four chaotic cases. (a) Point 1 (lower left region of

the cavity). (b) Point 4 (close to cavity midline in the upper

region).

Fig. 15. Behaviour of temperature T at two monitoring points

for four chaotic cases. (a) Point 1 (lower left region of the

cavity). (b) Point 4 (close to cavity midline in the upper

region).
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much larger than the average size of the compu-

tational mesh used �128� 220 nodes). This suggests

that all signi®cant scales are actually resolved by the

simulation. Similar spectra for point 4 (cavity mid-

line) exhibit similar features but a lower cuto� fre-

quency �f13±5�:
4. Numerical 1=f ``tail'' between f130±50 and

f � fmax � 1=�2dt�1280, inevitably associated with

the numerical implementation of the FFT algorithm

and devoid of physical meaning.

Fig. 17 reports consecutive instantaneous snapshots of

stream function (a) and temperature (b) similar to

those shown for the startup phase in Fig. 14, but well

after the initial transient has died away. The frames

cover roughly 2.8 time units at dimensionless intervals

of 00.4. The ¯ow evolves with continuous birth, des-

cent, coalescence and disruption of large coherent

structures (rolls). Animation of the streamlines show a

``gearbox''-like motion, with moving cogwheels having

non-sti� boundaries. The dominating energy dissipa-

Fig. 16. Normalized power spectra of vertical velocity (a) and temperature (b) at monitoring point 1 for Gr � 1:26� 109 (chaotic

¯ow).
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tion mechanism seems to be the coalescence of co-
rotating rolls (e.g frames 4±7). The evolution of the

temperature ®eld, shown in Fig. 17b, shows that, at
any instant, several regions of unstable thermal strati®-
cation are scattered throughout the cavity, with hot

spots corresponding to the centres of the convective
rolls where minimum mixing occurs.

9. Roll renewal frequency

As discussed previously, in all cases of unsteady
(either periodic or chaotic) ¯ow, the time dependence

is dominated by the roll renewal frequency fP: For
each test case, the most reliable way to estimate this
periodic frequency is the direct examination of

Fig. 17. Snapshots of ¯ow and temperature ®elds for Gr � 3:79� 108 (chaotic ¯ow) after the initial transient has died away.

Dimensionless time between frames00.4. (a) Streamlines, dimensionless separation = 0.2. Solid lines: clockwise ¯ow; broken lines:

anti-clockwise ¯ow. (b) Isotherms, dimensionless separation = 0.1.
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sequences of streamline maps: the time tP � f ÿ1P can be
identi®ed with the interval by which consecutive pairs

of recirculation rolls appear in the upper region of the

domain.

Results are summarized for all unsteady cases in
Fig. 18, in which fP is reported as a function of the

Grashof number. Uncertainty bars indicate the range

of oscillation of fP during the simulation time; of
course, the initial transient was excluded from the esti-

mate. Qualitative trend lines were added for clarity

purposes.

Note that fP is normalized by the reference fre-
quency F0 � �gbWc=D�1=2=�2p�, i.e. actually a Strouhal

number. In this form, it decreases slightly with Gr in

the narrow periodic-¯ow range, presents a minimum of
00.15 for Gr17:03� 105 and then increases as Gr1=3

through the quasi-periodic and early chaotic range,
attaining a value of 00.25 at Gr � 3:79� 106: The

further increase of Gr from 3:79� 106 to 1:26� 109

(fully chaotic range) leads only to a small increase of
fP, from00.25 to 00:30:
On the whole, the variation of fP over a very broad

range of Grashof numbers (covering 31
2 decades) is very

small, which indicates that theGr1=2 dependence included
in f0 accounts for most of the Grashof number e�ects.

The same conclusion was reached, for example, by

Henkes andHoogendoorn [27] in their simulations of dif-
ferentially heated cavity ¯ow. The roll renewal frequency

computed here for the case of periodic ¯ow (0.15±0.20) is

close to that obtained by Janssen and Henkes [28] for a
di�erentially heated square cavity at Pr � 0:71 (0.12 in

the present units), despite the large di�erence in the pro-
blem's conditions. It is also of the same order as that

computed by May [17] for a square enclosure with in-

ternal heat generation and four isothermal walls at Pr �
7 (0.05 in the present units). This supports the universal-

ity of the frequency scale adopted here and, in particular,
the choice of the cavity widthD (rather than its heightH )
as the fundamental length scale.

In order to illustrate the kind of thermal strati®ca-
tion which is established in the cavity at di�erent Gra-
shof numbers, Fig. 19 reports vertical pro®les of the

horizontally- and time-averaged temperature:

h �Tix�y� �
�1=2
ÿ1=2

�T�x, y� dx �16�

Results from steady-state, periodic, and chaotic-¯ow

cases have been included in this ®gure. It can be
observed that, through the low-Gr, steady-state cases
and the ®rst periodic case �Gr � 3:79� 105�, the verti-

cal strati®cation is very low due to the marginal role
of convection as compared to conduction. All cases
from Gr � 7:03� 105 to 3:79� 106 (including periodic,
quasi-periodic and chaotic ¯ow) present an inversion

in the vertical h �Tix pro®le, with unstable thermal strati-
®cation (in the time and x-averages) between y10 and
1. As Gr increases further, this inversion disappears

due to increasing mixing and the h �Tix pro®le reverts to
the monotonic behaviour typical of low-Gr cases, but
with a larger excursion between bottom and top. In

the whole range of the unsteady ¯ow cases, vertical
strati®cation varies very little; as Gr increases, the
decrease in the temperature close to the top wall (due
to increased mixing) is compensated by a comparable

reduction of the temperature close to the bottom wall
(due to a more e�ective penetration of the downcom-
ing boundary layers as they leave the cold wall and

turn towards the cavity midline). As a consequence,
the pro®les of h �Tix in Fig. 19 shift downwards but
their slope remains roughly unaltered. If this slope is

computed as:

C � h �Tix�y � �AR=2� ÿ h �Tix�y � ÿAR=2� �17�
then it remains close to 0.25 over the whole unsteady
Grashof number range.

10. Dynamics and time averages

The overall dynamics of the ¯ow and temperature
®elds is illustrated for di�erent values of the Grashof

number in Fig. 20. Here, the values of the vertical vel-
ocity v at the two monitoring points 1 and 2 of Fig. 1
(which are symmetrically located with respect to the

cavity midline) are plotted against each other during
the dynamic evolution of the ¯ow after the initial tran-
sient has ended. The graphs are all for the same

Fig. 18. Roll renewal frequency fP as a function of the Gra-

shof number for all the unsteady-¯ow cases simulated. Uncer-

tainty bars are shown (see text). Qualitative trend lines were

added for clarity purposes.
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dimensionless duration (020), thus encompassing from
3 to 6 main periods tP:
In all cases, during the initial transient (not reported

in the ®gure for the sake of readability), the point

�v1, v2� starts from the origin (initial conditions of zero

velocity everywhere), moves along the bisecting line
v1 � v2, departs from it when the left±right symmetry

is broken, and eventually enters an asymptotic orbit.

Thus, each of the plots in Fig. 20 can be regarded as

the projection of a ®nite region of the system's attrac-
tor (which is embedded in the multi-dimensional phase

space of the system's degrees of freedom) onto the

plane �v1, v2�: For simplicity, we will call it the attrac-
tor in the following.

Of course, in the steady-state ¯ow cases (not

reported), in which spatial symmetry is preserved, the

representative point never leaves the bisecting line

v1 � v2, and the attractor collapses to a single point
lying on the same line.

In the periodic cases like that at Gr � 3:78� 105,

graph (a), the attractor is an eight-shaped limit cycle

which is swept repeatedly during the simulation. Thus,

a Hopf bifurcation occurs between Gr � 2:19� 105

(highest value for which a steady-state solution was

obtained) and Gr � 3:78� 105: The period of the

eight-shaped orbit coincides with the previously dis-
cussed roll renewal time tP � f ÿ1P : The attractor itself

is perfectly symmetric with respect to the bisecting line

v1 � v2, which causes the characteristic ¯ow behaviour

discussed in Section 6 and makes long-term averages
perfectly symmetric with respect to the cavity midline

x � 0, see following Fig. 21.

The following case Gr � 1:26� 106, graph (b), is

slightly beyond the breakdown of perfect periodicity,
as shown also by the time sequences previously

reported in Figs. 10 and 11. The trajectory in the

�v1, v2� plane now describes consecutive orbits which

are only roughly similar to one another. Moreover,
each orbit does not exhibit left±right symmetry.

Graphs (c) and (d) in Fig. 20 refer to Grashof num-

bers in the chaotic range. The increasing entanglement

of the trajectories can be observed. The symmetry of

the attractor with respect to the bisecting line v1 � v2,
however, does not vary monotonically with Gr, but

rather seems to increase again as compared with the

strongly asymmetric case Gr � 1:26� 106 in graph (b).

Moreover, the region of the phase space occupied by
the trajectories tends to shrink and become more regu-

lar as Gr increases.

For some of the test cases simulated, the following

Figs. 21 and 22 report time averages and statistics rela-

tive to an integral number of main periods tP (6±8).

Fig. 21 shows the time-averaged stream function. In
the periodic case Gr � 3:79� 105 (a), consistently with

the attractor's behaviour illustrated in Fig. 20(a), the

time-averaged ¯ow ®eld exhibits a perfectly left±right

symmetric con®guration, with a single recirculation cell
on each side. The circulation centres are shifted

towards the bottom of the cavity. In the following case

Gr � 1:26� 106 (b), the time-averaged ¯ow ®eld is

markedly asymmetric, which, too, is consistent with
the asymmetric shape of the attractor in Fig. 20(b).

Moreover, the circulation exhibits a multi-cellular pat-

tern. Finally, as Gr increases, e.g. to 3:79� 108 (c), the
symmetric and uni-cellular circulation pattern is partly

recovered.

Fig. 19. Vertical pro®les of the time- and horizontally-averaged temperature h �Tix for all the test cases simulated, showing thermal

strati®cation.
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The time-averaged temperature ®eld is shown for the

same test cases in Fig. 22. As Gr increases, the central
region which presents a signi®cant thermal strati®ca-

tion spreads, while the vertical thermal boundary
layers become thinner. The same remarks as above

hold as far as the symmetry of the time-averaged sol-
ution is concerned.

A careful analysis of time sequences shows that the
above illustrated symmetry properties of trajectories
and time averages depend crucially on the size of the

circulation rolls and thus on the exact number of them
that can simultaneously occupy the cavity volume at

any instant. As shown by Fig. 8a, in the periodic case
Gr � 3:79� 105 the cavity is ®lled during most of the

time by three rolls on each side, arranged in a stag-

gered con®guration. This should be compared with
Fig. 11a, in which a time sequence covering approxi-

mately one main period tP (05.8) was reported for the
case Gr � 1:26� 106: It can be observed that the mean

size of recirculation rolls is smaller than in the previous
case, so that the cavity accommodates for most of the

time four rolls on one side (the right one in the present
realization) but only three on the opposite side (left in
the present realization). This causes trajectories in

Fig. 20b, as well as time averages in Fig. 21b, to be
markedly asymmetric. As Gr increases, the mean size

of rolls increases again so that for Gr � 3:79� 108, as
shown in Fig. 17, three rolls per side are again present

Fig. 20. Plots of vertical velocity at point 2 versus vertical velocity at point 1 for four test cases during 020 time units. (a)

Gr � 3:79� 105; (b) Gr � 1:26� 106; (c) Gr � 3:79� 106; (d) Gr � 3:79� 108:
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during most of the time, giving the more symmetric
behaviour in Fig. 21c.

11. Shear stress and heat transfer

Fig. 23(a) reports time-averaged pro®les of the wall
shear stress along the side walls for all the cases

studied. The wall shear stress was further averaged
between the left and right walls and normalized by
rU 2

0, thus taking the form of a friction coe�cient Cf :
All curves exhibit a peak near the cavity top, where

the horizontal boundary layers turn and meet the cold
walls; in periodic and transitional cases, this is fol-
lowed by a gradual increase towards the cavity bot-

tom, associated with the increasing ¯uctuation
intensity in the downcoming boundary layers, while, in

fully chaotic cases, the overall pro®le is much ¯atter

over most of the wall length.

Fig. 23(b) reports the spatially-averaged value of Cf

as a function of Gr over the whole range studied. At

the lowest values of Gr, the computed values of Cf are

very close to the value 4p2/15 1 2.63 deduced from the

analytical solution discussed in Section 3, which can be

regarded as the asymptotic limit of Cf for Gr40: At

higher Gr, Cf scales roughly as Grÿ1=3, i.e. the dimen-

sional wall shear stress scales as U 4=3
0 , thus exhibiting a

behaviour intermediate between that of a viscous and

a hydraulic resistance.

For the present con®guration, the mean value of the

wall heat ¯ux under thermal equilibrium conditions is

qD=2; this value can be used to normalize the local

and/or instantaneous values of the wall heat ¯ux q0.
Fig. 24a reports the wall heat ¯ux pro®les for all the

cases studied; all curves represent long-term time

Fig. 21. Time-averaged streamlines (dimensionless interval = 0.2). (a) Gr � 3:79� 105; (b) Gr � 1:26� 106; (c) Gr � 3:79� 108:

Fig. 22. Time-averaged isotherms (dimensionless interval = 0.1). (a) Gr � 3:79� 105; (b) Gr � 1:26� 106; (c) Gr � 3:79� 108:
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averages which were further averaged between the left
and right walls and plotted against the non-dimen-

sional vertical co-ordinate.

For the steady-state and periodic cases the curves

are rather ¯at, with small variations with respect to the

mean value. On the other hand, large variations are

present for higher Grashof numbers in the chaotic
range. Peak values are obtained in correspondance

with the impingement of hot ¯uid on the cold walls

near the cavity top, while lowest values correspond to

the separation of the wall boundary layers near the

cavity bottom. A ¯at distribution of q0 is obtained in
the central region of the cavity.

The in¯uence of Gr on heat transfer is better shown
in Fig. 24b. This reports the quantities Nu1 � 1=Tmax

�Tmax being the time-averaged maximum temperature

in the cavity) and Nu2 � �2=3�=hTi �hTi being the time-

and space-averaged temperature). This latter de®nition
is such that it gives Nu2 � 1 for a purely conductive

temperature distribution. Both quantities can be

regarded as alternative de®nitions of the Nusselt num-

ber (ratio of overall to conductive heat transfer) for
the present con®guration; they are plotted as functions

of the Grashof number, showing results from all cases
examined. It is interesting to observe that, for Grashof

numbers below 2� 106 (steady-state, periodic and

transitional conditions), convection actually results in
an increase of the temperature maximum �Nu1 < 1� by
transporting hot ¯uid into the hottest region of the
enclosure (adjacent to the top adiabatic wall). A simi-

lar minimum Nu1 < 1 in correspondence with transi-
tional values of Gr for internally heated cavities was

observed by De Socio et al. [29].

As expected in liquid metals, Nu1 and Nu2 never
attain very high values, being 02.4 and 02.7, respect-

ively, at the highest Gr studied �1:26� 109�: This
shows that even the energetic turbulent convection pre-

vailing at high Gr enhances heat transfer only moder-

ately.

Fig. 23. Time-averaged friction coe�cient Cf : (a) Pro®les

along the vertical walls for all cases investigated. The mean of

left and right wall values is shown. (b) Dependence of the

spatially-averaged value h �Cfiy upon the Grashof number.

Fig. 24. Heat transfer (a) Time-averaged pro®les of the wall

heat ¯ux q0 (normalized by its mean value qD=2� along the

vertical walls for all cases investigated. The mean of left and

right wall values is shown. (b) Dependence of the Nusselt

numbers Nu1 and Nu2 upon the Grashof number.
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For Gr > 0106, both Nu1 and Nu2 increase approxi-
mately as Gr1=6: This behaviour di�ers from that

�Nu20Gr0:23±0:24� indicated by the experimental results
of Fiedler and Wille [8], Kulacki and Nagle [9], and by
the computational studies of Farouk [13], and Dinh

and Nourgaliev [15], which, however, refer to shallow
layers cooled only from the upper surface and to a
Prandtl number of 6±7. The lower Grashof number

dependence found in the present study is coherent with
the lower Prandtl number considered (0.0321); unfortu-
nately, no results, either experimental or compu-

tational, have been described in the literature for the
speci®c case of an internally heated low Prandtl num-
ber ¯uid.

12. Conclusions

A computational study was conducted of low-
Prandtl number free convection in a volumetrically
heated rectangular enclosure of aspect ratio 4, having

adiabatic top and bottom walls and isothermal side
walls. Direct numerical two-dimensional simulations
were performed by a ®nite-volume method for Grashof

numbers ranging from 3:79� 104 to 1:26� 109:
According to the value of Gr, di�erent ¯ow regimes
were obtained: steady-state, periodic, and chaotic. This
suggests that, as Gr increases, the ¯ow undergoes ®rst

a Hopf bifurcation, leading to a periodic regime, and
then transition to chaos. The periodic regime exists
only in a narrow range of Gr.

In all cases, the initial transient included the appear-
ance and growth of two elongated, symmetric recircu-
lation cells on the two sides of the cavity. At low

values of Gr (up to 02 � 105 ), these cells remained
stable and a steady-state con®guration (base ¯ow) was
attained. In this range, the computed velocity and tem-
perature distributions, away from the horizontal end

walls of the cavity, were close to the theoretical sol-
ution for parallel ¯ow. The velocity in the central ris-
ing plume and the downcoming boundary layers, as

well as the shear stress, scaled linearly with the Gra-
shof number.
Periodic solutions were obtained for Gr � 3:79� 105

and 7:03� 105: In this range, the initial instability of
the base ¯ow was the growth of an antisymmetric vel-
ocity disturbance propagating downwards as a travel-

ling wave having a dimensionless wavenumber of 01
and a dimensionless speed of 00.2. The Hopf bifur-
cation marking the transition from steady state to
time-periodic ¯ow was accompanied by the transition

from symmetric to instantaneously asymmetric sol-
utions (staggered rolls) with symmetric time averages.
For Gr > 0106, the ¯ow periodicity was lost and

chaotic solutions, exhibiting a broad-band spectrum,
were obtained. Time series of monitoring quantities in

the chaotic range, as well as instantaneous ``snapshots''
of the ¯ow and temperature ®elds, clearly showed

space and time-intermittence phenomena. Power spec-
tra exhibited a low-frequency region associated with
the renewal of rolls; a broad-band intermediate range

characterized by a slope close to ÿ5/3; and a steep fall
at frequencies higher than a cuto� value. The latter
depended upon the Grashof number and was associ-

ated with the dissipative scales of the chaotic motion.
Even in the chaotic range, the ¯ow pattern took the

form of downward-travelling staggered rolls and the

dominating frequency was identi®able with the roll-
renewal frequency, i.e. the frequency by which pairs of
recirculation rolls were generated near the top corners
of the cavity. Once made dimensionless, this was

found to decrease in the periodic range, to increase as
Gr1=3 in the transitional range and to attain an almost
uniform value of 0.25±0.30 in the fully chaotic range.

For su�ciently high Grashof numbers �> 106�, the
time-averaged Nusselt number (de®ned on the basis of
the maximum or spatially averaged temperature)

increased as Gr1=6 and attained the relatively low value
of 02 at the highest Gr studied �1:26� 109�: The time-
averaged wall friction coe�cient decreased as Grÿ1=3:
The ®rst transition from steady to periodic ¯ow

(Hopf bifurcation) followed qualitatively the predic-
tions of linear stability theory for parallel ¯ow in in®-
nite-AR slots, but occurred at a Grashof number 3±4

times higher and resulted in slightly higher wavenum-
bers and lower wave speed; these discrepancies can all
be explained by the ®nite height of the enclosure and

the in¯uence of the end walls. Linear stability analysis
should be extended to ®nite-length enclosures before a
quantitative comparison of theoretical and compu-

tational results can be drawn.
As regards the second transition from periodic to

chaotic ¯ow, we are not aware of the previous compar-
able studies, either analytical or numerical, for en-

closures with internal heat generation. A theoretical
analysis, which should probably be based on nonlinear
stability theory, ought to focus on the basic mechan-

isms for the de-stabilization of the periodic travelling-
roll pattern and on the possible existence of intermedi-
ate quasi-periodic regimes.

Of course, the present two-dimensional simulations
leave unanswered the question of the stability of the
¯ow under three-dimensional disturbances. The few

available studies based on fully three-dimensional nu-
merical simulations [30] suggest that free-convective
¯ows in enclosures are more unstable with respect to
three-dimensional than two-dimensional disturbances;

therefore, it is possible that in three dimensions the
boundaries between steady-state, periodic and chaotic
regimes would be drastically di�erent, and also that in-

termediate periodic solutions would not occur at all.
Finally, a better understanding of the in¯uence of
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aspect ratio and Prandtl number on ¯ow regimes and
transitions would be highly desirable. The former

aspect is currently being investigated by our group and
will be discussed in future work.
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